Structure and uniqueness of the (81, 20, 1, 6) strongly regular graph
نویسندگان
چکیده
Brouwer, A.E, W.H. Haemers, Structure and uniqueness of the (81,20, 1.6) strongly regular graph, Discrete Mathematics 106/107 (1992) 77-82. We prove that there is a unique graph (on 81 vertices) with spectrum 20’2”‘(-7)*“. We give several descriptions of this graph, and study its structure. Let r = (X, E) be a strongly regular graph with parameters (v, k, ;1, p) = (81, 20, 1, 6). Then r (that is, its O-l adjacency matrix A) has spectrum 201260(-7)20, where the exponents denote multiplicities. We will show that up to isomorphism there is a unique such graph K More generally we give a short proof for the fact (due to Ivanov and Shpectorov [9]) that a strongly regular graph with parameters (v, k, A, p) = (q4, (q2 + l)(q l), q 2, q(q 1)) that is the collinearity graph of a partial quadrangle (that is, in which all maximal cliques have size q) is the second subconstituent of the collinearity graph of a generalized quadrangle GQ(q, q*). In the special case q = 3 this will imply our previous claim, since A = 1 implies that all maximal cliques have size 3, and it is known (see Cameron et al. [5]) that there is a unique generalized quadrangle GQ(3,9) (and this generalized quadrangle has an automorphism group transitive on the points). The proof will use spectral techniques very much like those found in Correspondence to: A.E. Brouwer, Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, Netherlands. 0012-365X/92/$05.00
منابع مشابه
A spectral proof of the uniqueness of a strongly regular graph with parameters (81, 20, 1, 6)
We give a new proof that there exists a unique strongly regular graph with parameters (81, 20, 1, 6). Unlike the finite geometry approach used by Brouwer and Haemers, we use linear algebra and spectral graph theory concepts, namely the technique of star complements, in our proof. AMS Classification: 05E30, 05C50
متن کاملer 10 82 ON A FAMILY OF STRONGLY REGULAR GRAPHS WITH λ = 1 ANDRIY
In this paper, we give a complete description of strongly regular graphs with parameters ((n + 3n − 1), n(n + 3), 1, n(n + 1)). All possible such graphs are: the lattice graph L3,3 with parameters (9, 4, 1, 2), the Brouwer-Haemers graph with parameters (81, 20, 1, 6), and the Games graph with parameters (729, 112, 1, 20).
متن کاملCERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS
In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...
متن کاملExistence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph
The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...
متن کاملGeneralized Regular Fuzzy Irresolute Mappings and Their Applications
In this paper, the notion of generalized regular fuzzy irresolute, generalized regular fuzzy irresolute open and generalized regular fuzzy irresolute closed maps in fuzzy topological spaces are introduced and studied. Moreover, some separation axioms and $r$-GRF-separated sets are established. Also, the relations between generalized regular fuzzy continuous maps and generalized regular fuzzy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 106-107 شماره
صفحات -
تاریخ انتشار 1992